B.7 Graphing in the Coordinate Plane

Essential Question How can you use a graph to recognize a

pattern and write a rule?

1

ACTIVITY: Graphing in a Coordinate Plane

Work with a partner.

a. Copy and complete the table.

x	-4	-3	-2	-1	0	1	2	3	4
y = x - 2									

- **b.** Make a list of the ordered pairs represented by the table.
- **c.** Plot each ordered pair.
- **d.** Connect the points. Describe the graph.

ACTIVITY: Finding a Pattern

Work with a partner. You have learned how to subtract positive numbers. Complete the following activity to discover how to subtract negative numbers.

a. Copy and complete the table.

x	0	1	2	3	4
y = 1 - x					

- **b.** Plot the points from the table. Connect the points. Describe the graph.
- **c.** Extend the graph to the left of the *y*-axis. Then use the graph to complete the pattern in the table.

x	-4	-3	-2	-1
y = 1 - x				

d. Use your completed table to answer the following.

$$1 - (-4) =$$

ACTIVITY: Finding a Pattern

Work with a partner.

1 - (-2) =

- **a.** Copy and complete tables similar to those in Activity 2 for the equations, y = 2 x, y = 3 x, and y = 4 x.
- **b.** For each equation, plot the ordered pairs represented by the table in the same coordinate plane and connect the points.
- **c.** Describe how the equations are the same. Describe how the graphs are the same. Describe how the equations are different. Describe how the graphs are different.
- **d.** Without plotting points, predict how the equation y = 5 x would be the same as the other equations. Predict how it would be different.

-What Is Your Answer?

- **4. IN YOUR OWN WORDS** How can you use a graph to recognize a pattern and write a rule?
- **5.** Write a rule for subtracting a negative number.

Use what you learned about graphing in the coordinate plane to complete Exercises 9–12 on page A52.

EXAMPLE 1 Using an Input-Output Table

Plot the data in the input-output table. Describe the pattern.

Input, <i>x</i>	Output, y
-3	-2
-2	-1
-1	0
0	1
1	2
2	3

• The points lie on a line.

On Your Own

Now You're Ready Exercises 5–8 Plot the data in the input-output table. Describe the pattern.

1.					2.
Input, <i>x</i>	-2	-1	0	1	
Output, y	5	3	1	-1	

Input, <i>x</i>	-5	-4	-3	-2
Output, y	-3	-2	-1	0

EXAMPLE 2 Graphing a Function

Make an input-output table for y = 3 - x. Use the inputs -4, -2, 0, 2, and 4. Then draw the graph of the function.

x	3 – <i>x</i>	У	(x, y)
-4	3 - (-4)	7	(-4, 7)
-2	3 - (- 2)	5	(-2, 5)
0	3 – 0	3	(0, 3)
2	3 – 2	1	(2, 1)
4	3 - 4	-1	(4, -1)

🕨 On Your Own

Make an input-output table for the function. Use the inputs -3, -1, 0, 1, and 3. Then draw the graph of the function.

3.
$$y = x - 1$$

4. y = 2 - x

EXAMPLE

Remember

the equation.

You can check your

equation by substituting

the input values for x in

3

Standardized Test Practice

Which function is shown in the table?

A	y = 3 - x	B y = -x - 3
(C)	y = x + 3	(D) $y = x - 3$

Look at the relationship between the inputs and outputs. Each output *y* is 3 less than the input *x*. So, the function is y = x - 3.

• The correct answer is \bigcirc .

Input, <i>x</i>	Output, y
-4	-7
-3	-6
-2	-5
-1	-4
0	-3

🔵 On Your Own

5.

Write an equation for the function shown in the table.

6.

Now You're Ready Exercises 23–26

Input, <i>x</i>	-2	-1	0	1	Input, <i>x</i>
Output, y	-8	-7	-6	-5	Output, y

Input, <i>x</i>	-2	-1	0	1
Output, y	2	1	0	-1

EXAMPLE 4

Real-Life Application

An underwater volcano erupts and forms an island. The graph shows the elevation *n* (in feet) of the volcano in relation to the ocean surface. Let *t* represent the number of years since its first eruption. What was the elevation of the volcano when it first erupted? Explain.

From the graph, the elevation is -500 feet when t = 0.

So, the volcano first erupted 500 feet beneath the ocean surface.

📄 On Your Own

- **7.** In Example 4, how many years did it take for the volcano to reach the ocean surface? Explain.
- **8.** In Example 4, estimate the elevation of the volcano 30 years after its first eruption. Explain how you found your answer.

B.7 Exercises

Vocabulary and Concept Check

- **1.** VOCABULARY For the function y = 3x + 4, which variable is the input and which variable is the output?
- **2. OPEN-ENDED** Name two points on the graph of y = 2x 1.
- **3. REASONING** Which function's graph passes through the origin?

y = x - 1y = x - 2y = xy = x + 1

4. REASONING Is it possible for a line to pass through the points (-2, 3), (0, 4), and (1, 5)? Explain your reasoning.

Practice and Problem Solving

Plot the data in the input-output table. Describe the pattern.

1 5. Input Outp

:, X	-1	0	1	2	3	6.
ut, <i>y</i>	-3	-2	-1	0	1	

Input, <i>x</i>	-4	-2	0	2	4
Output, y	-1	0	1	4	2

7.	Input, <i>x</i>	-2	-1	0	1	2	
	Output, y	-3	-1	1	3	5	

•	Input, <i>x</i>	-1	0	1	2	3
	Output, y	7	4	1	-2	-5

Make an input-output table for the function. Use the inputs -2, -1, 0, 1, and 2. Then draw the graph of the function.

8

2 9. $y = 3 - x$	10. $y = 5 - x$
13. $y = x + 2$	14. $y = 3x$

11. y = -1 - x **12.** y = -4 - x**15.** y = -10 + x**16.** y = -2 + 2x

17.	ERROR ANALYSIS Describe and correct					
	the error in making the input-output	X	x	4 – <i>x</i>	У	(x, y)
	table for $y = 4 - x$.		-3	4 - 3	1	(-3, 1)
18.	SHRIMP PRODUCTION Graph the function shown in the table.		-2	4 – 2	2	(-2, 2)
	Write an equation for the function.		-1	4 - 1	3	(-1, 3)
			0	4 – 0	4	(0, 4)

Amelia Isla	and Shrimp Production
Years, x	Pounds (millions), y
1	2
2	4
3	6
4	8

Match the function with its graph.

24.

Write an equation for the function shown in the table.

3 23.

Input, <i>x</i>	-2	-1	0	1	2
Output, y	-3	-2	-1	0	1

25.	Input, <i>x</i>	-1	0	1	2	3
	Output, y	-2	0	2	4	6

Input, <i>x</i>	-4	-2	0	2	4
Output, y	4	2	0	-2	-4

3

-2

0

2x

1

26.	Input, <i>x</i>	-4	-2	0	2	4
	Output, y	2	1	0	-1	-2

27. STOPPING DISTANCE The bar graph shows the stopping distances for a car traveling at different speeds. Let *S* be the speed, *R* be the distance traveled before reacting, and *T* be the total stopping distance.

- **a.** Write a function that gives the distance traveled before the driver reacts.
- **b.** Write a function that gives the total stopping distance in terms of the speed.
- c. If a driver sees an object that is 45 meters away, will the car hit the object? Explain.

Explain how you would graph the function $y = x^2 + 2$. Draw 28. ainking the graph of the function. How does it compare with the graphs of other functions in this lesson?

Æ		Fair Game	Review What yo	u learned in previous g	rades & lessons
1	Sub	tract.			
	29.	69 - 38	30. 82 - 74	31. 177 – 63	32. 451 – 268
	33.	MULTIPLE CHO and 30?	ICE What is the range of	of the data set 12, 8, 17	, 12, 15, 18,
		(A) 12	B 15	(C) 18	D 22